»&

4%/ BlockSec

Security Audit Report for Sumero Finance

Date: May 23, 2023
Version: 1.0

Contact: contact@blocksec.com

Digitally signed by
B|OCkS€C BlockSec Audit Team
. Date: 2023.05.24
Audit Team 15:59:54 +08'00"

mailto:contact@blocksec.com

1

Contents

Introduction 1
1.1 About Target Contracts 1
1.2 Disclaimer e e 1
1.3 Procedure of Auditing e 2
1.3.1 Software Security 2
1.3.2 DeFiSecurity e 2
1.3.3 NFT Security o e 3
1.3.4 Additional Recommendation 3
1.4 Security Model e 3
Findings 5
2.1 DeFiSecurity e 5
2.1.1 Incorrect Calculation when Updating rewardRate 5
2.1.2 Improper Check of maximumBondRewards 6
2.1.3 Lack of Check for Collateralization Rate of the first userincreate() 7
2.2 Additional Recommendation 11
2.2.1 Avoid Duplicated Assets in AssetManager 11
2.2.2 Avoid Incomplete Check of Whitelist Status 12
2.2.3 Code Optimization 12
2.2.4 Add Sanity Address Checks in Constructor 20
2.2.5 Redundant Check in withdrawPassedRequest() 20
2.2.6 Add Sanity Checks for WithdrawLiveness 22
2.2.7 Add Sanity Checks for Transformed settlementPrice 23
2.2.8 Redundant Check in createLiquidation() 25
2.3 NoOtes 28
2.3.1 Temporary System Parametersfor Testing 28
2.3.2 Customized FinancialProductLibrary 28

2.3.3 Potential Centralized Problem ... 29

Report Manifest

Item Description
Client Sumero Finance
Target Sumero Finance

Version History

Version

Date Description

1.0

May 23, 2023 First Version

About BlockSec
laborates with leading DeFi projects to secure their products. The team is founded by top-notch security
researchers and experienced experts from both academia and industry. They have published multiple
blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-
tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information | Description

Type Smart Contract

Language Solidity

Approach Semi-automatic and manual verification

The repository that has been audited includes sumero-contracts-0.1.4-pre-release .

The auditing process is iterative. Specifically, we will audit the commits that fix the discovered issues.
If there are new issues, we will continue this process. The commit SHA values during the audit are shown
in the following. Our audit report is responsible for the only initial version (i.e., Version 1), as well as new
codes (in the following versions) to fix issues in the audit report.

Project Commit SHA
681310bcbab6c00fc3ae43dedd9ef40bcOadds67

. Version 1

Sumero Finance (v0.1.4-pre-release)

b887e47586f91cfeb5d9495aaaf62ebe8acfbb7ab

(v0.1.5-pre-release)

Version 2

Note that, we did NOT audit all the modules in the repository. The modules covered by this audit

report include contracts folder contract only. Specifically, the files covered in this audit include:

- interfaces

- UMA/common

- UMA/financial-templates

- UMA/oracle

- uniswapV?2

- AssetManager.sol

- ClayBonds.sol

- ClayDistributor.sol

- ClayStakingRewards.sol

- ClayToken.sol

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not
consider, and should not be interpreted as considering or having any bearing on, the potential economics
of a token, token sale or any other product, service or other asset. Any entity should not rely on this report
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or
other asset.

Thttps://github.com/SumeroApp/sumero-contracts/releases/tag/v0.1.4-pre-release

https://github.com/SumeroApp/sumero-contracts/tree/v0.1.4-pre-release
https://github.com/SumeroApp/sumero-contracts/tree/v0.1.4-pre-release
https://github.com/SumeroApp/sumero-contracts/tree/v0.1.5-pre-release
https://github.com/SumeroApp/sumero-contracts/tree/v0.1.5-pre-release

'g‘,\l BlockSec

This audit report is not an endorsement of any particular project or team, and the report does not
guarantee the security of any particular project. This audit does not give any warranties on discovering
all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit cannot be considered comprehensive, we always
recommend proceeding with independent audits and a public bug bounty program to ensure the security
of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,
the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the
computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then
manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-
tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).
We also manually analyze possible attack scenarios with independent auditors to cross-check the
result.

- Recommendation We provide some useful advice to developers from the perspective of good
programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

* Reentrancy

*+ DoS

* Access control

+ Data handling and data flow

* Exception handling

* Untrusted external call and control flow
* Initialization consistency

+ Events operation

* Error-prone randomness

* |Improper use of the proxy system

1.3.2 DeFi Security

* Semantic consistency

* Functionality consistency
Access control

Business logic

Token operation

*

*

*

+* Emergency mechanism

’Q\,\l BlockSec

*

Oracle security
Whitelist and blacklist
* Economic impact
Batch transfer

*

*

1.3.3 NFT Security

+ Duplicated item
x Verification of the token receiver
x Off-chain metadata security

1.3.4 Additional Recommendation

* Gas optimization

x Code quality and style
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing
process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry
and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.
The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to
estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact
is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-
tively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

High

Impact

Low

High Low
Likelihood

Accordingly, the severity measured in this report are classified into three categories: High, Medium,
Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk
cannot be well determined.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
3https://cwe.mitre.org/

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

g\,\l BlockSec

Furthermore, the status of a discovered item will fall into one of the following four categories:
Undetermined No response yet.
Acknowledged The item has been received by the client, but not confirmed yet.
Confirmed The item has been recognized by the client, but not fixed yet.
Fixed The item has been confirmed and fixed by the client.

Chapter 2 Findings

In total, we find three potential issues. Besides, we have eight recommendations and three notes as

follows:
- High Risk: 2
- Medium Risk: 0
- Low Risk: 1
- Recommendations: 8
- Notes: 3
ID | Severity | Description Category Status
1 High Incorrect Calculation when Updating re- DeFi Security Fixed
wardRate
2 Low Improper Check of maximumBondRewards DeFi Security Fixed
3 High L.ack of Qheck for Collateralization Rate of the DeFi Security Acknowledged
first user in create()
4 - Avoid Duplicated Assets in AssetManager Recommendation | Confirmed
5 - Avoid Incomplete Check of Whitelist Status Recommendation | Confirmed
6 - Code Optimization Recommendation | Confirmed
7 - Add Sanity Address Checks in Constructor Recommendation | Fixed
8 i Redundant Check in withdrawPasse- Recommendation | Confirmed
dRequest()
9 - Add Sanity Checks for WithdrawLiveness Recommendation | Confirmed
10 |- Add Sgnity Checks for Transformed settle- Confirmed Acknowledged
mentPrice
11 | - Redundant Check in createLiquidation() Recommendation | Confirmed
12 | - Temporary System Parameters for Testing Note Fixed
13 | - Customized FinancialProductLibrary Note Confirmed
14 | - Potential Centralized Problem Note Confirmed

The details are provided in the following sections.

2.1 DeFi Security

2.1.1 Incorrect Calculation when Updating rewardRate

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description The privileged function updateMaxReward() is designed to update the rewardRate of the
staking contract. In this function, the new rewardRate is calculated based on the remaining amount of
rewards that need to be distributed within the remaining time.

However, the current implementation calculates the remaining rewards by subtracting the rewardPerTokenStored

from maxReward, which is incorrect. This is because rewardPerTokenStored represents the amount of re-
ward that can be claimed per share instead of the total distributed rewards.

@V BlockSec

168 function updateMaxReward(uint256 _maxReward) external onlyOwner notExpired {
169 rewardPerTokenStored = rewardPerToken() ;

170 require(

171 rewardPerTokenStored < _maxReward,

172 "ClayStakingRewards: INVALID_MAX_REWARD_AMOUNT"
173);

174 lastUpdateTime = block.timestamp;

175 maxReward = _maxReward;

176 rewardRate =

177 (_maxReward - rewardPerTokenStored / 1e18) /
178 (periodFinish - block.timestamp) ;

179 emit RewardRateUpdated(rewardRate);

180 }

Listing 2.1: ClayStakingRewards.sol

Impact Rewards may be distributed more than expected.

Suggestion To calculate the rewards that have already been distributed, multiply the rewardPerTokenStored
by _totalSupply.

2.1.2 Improper Check of maximumBondRewards

Severity Low
Status Fixed in Version 2
Introduced by Version 1

Description The function issue() allows users to deposit their CLAYs for zCLAY bonds. The amount of
zCLAY (i.e., bondAmount) minted to the user is the sum of initial deposited CLAYs and rewards.

According to the design, the total supply of minted zCLAY bonds should never exceed maximumBondRewards
(i.e., less than or equal to). However, the check implemented in this function (line 144) makes sure that
the total amount of zCLAY bonds is always less than maximumBondRewards, which is not consistent with the

design.

113 function issue(uint256 _clayAmount) external returns (uint256 bondAmount) {
114 require(

115 _clayAmount > MIN_ISSUANCE_AMOUNT,

116 "ClayBonds: INSUFFICIENT_AMOUNT"

117)

118 require(

119 block.timestamp >= depositStartDate,

120 "ClayBonds: DEPOSIT_NOT_YET_STARTED"

121)3

122 require(

123 block.timestamp < depositCloseDate,

124 "ClayBonds: DEPOSIT_CLOSED"

125);

126

127 uint256 daysLeftToMaturationDate = getDaysLeftToMaturationDate();
128 uint256 rewardPercent = getRewardPercent(daysLeftToMaturationDate) ;
129 uint256 reward = getReward(_clayAmount, rewardPercent);

@V BlockSec

130

131 bondAmount = _clayAmount + reward;

132

133 bool success = clay.transferFrom(

134 msg.sender,

135 address(this),

136 _clayAmount

137)3

138 require(success, "ClayBonds: TRANSFER_FAILED");
139 _mint (msg.sender, bondAmount) ;

140

141 totalBondDeposits = totalBondDeposits + bondAmount;
142

143 require (

144 totalBondDeposits < maximumBondRewards,
145 "ClayBonds: MAX_BOND_REWARD_POOL_REACHED"
146)

147

148 emit Issued(

149 msg.sender,

150 _clayAmount,

151 daysLeftToMaturationDate,

152 rewardPercent,

153 reward

154)¢

155 }

Listing 2.2: ClayBonds.sol

Impact The total amount of zCLAY bonds can never reach maximumBondRewards.

Suggestion The check should be adjusted to “totalBondDeposits <= maximumBondRewards”.

2.1.3 Lack of Check for Collateralization Rate of the first user in create()

Severity High
Status Acknowledged
Introduced by Version 1

Description The function create () allows the user to open a new position or increase an existing po-
sition with a valid collateralization ratio. However, the check for the collateralization ratio doesn’t work for
the first user who creates the position. In this case, the malicious user is able to mint an extremely large
amount of tokenCurrency with only a small amount of collateral.

The first (malicious) position could be used to attack other valid positions (with valuable collateral)
created by the follow-up users. Specifically, the malicious user can liquidate a valid position with a certain
amount of tokenCurrency (via the function createlLiquidation()) even if the position’s collateralization
ratio is eligible. It is worth noting that, even when a disputer succeeds to dispute, the cost of the malicious
user (i.e., disputerDisputeReward and sponsorDisputeReward) iS neglectable. Actually, the cost is much
less than the profit, as tokenCurrency paid by the malicious user is minted with little cost.

[
‘483 function create(

@V BlockSec

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

527
528
529
530
531
532
533

FixedPoint.Unsigned memory collateralAmount,

FixedPoint.Unsigned memory numTokens

) public onlyPreExpiration nonReentrant {

PositionData storage positionData = positions[msg.sender];

// Either the new create ratio or the resultant position CR must be above the current GCR.
require (
(_checkCollateralization(
positionData.collateral.add(collateralAmount),
positionData.tokensOutstanding.add (numTokens)
) || _checkCollateralization(collateralAmount, numTokens)),

"Insufficient collateral"

)3

require(
positionData.withdrawalRequestPassTimestamp == O,
"Pending withdrawal"

)3

if (positionData.tokensOutstanding.isEqual(0)) {
require(
numTokens . isGreaterThanOrEqual (minSponsorTokens) ,
"Below minimum sponsor position"
)5

emit NewSponsor(msg.sender) ;

// Increase the position and global collateral balance by collateral amount.

_incrementCollateralBalances(positionData, collateralAmount);

// Add the number of tokens created to the position’s outstanding tokens.

positionData.tokensOutstanding = positionData.tokensOutstanding.add(
numTokens

)3

totalTokensOutstanding = totalTokensOutstanding.add(numTokens) ;

emit PositionCreated(
msg.sender,
collateralAmount.rawValue,
numTokens.rawValue

g

// Transfer tokens into the contract from caller and mint corresponding synthetic tokens to
the caller’s address.
collateralCurrency.safeTransferFrom(
msg.sender,
address(this),
collateralAmount.rawValue
)3

require(tokenCurrency.mint (msg.sender, numTokens.rawValue));

Listing 2.3: UMA/financial-templates/expiring-multiparty/PricelessPositionManager.sol

'Q‘,\l BlockSec

452
453
454
455
456
457
458
459
460
461
462
463

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

483
484

485

486
487
488
489
490
491
492
493
494
495
496
497
498
499

function withdrawLiquidation(uint256 liquidationId, address sponsor)

public
withdrawable(liquidationId, sponsor)
nonReentrant

returns (RewardsData memory)

LiquidationData storage liquidation = _getLiquidationData(
sponsor,
liquidationId

)3

// Settles the liquidation if necessary. This call will revert if the price has not
resolved yet.

_settle(liquidationId, spomnsor);

// Calculate rewards as a function of the TRV.
FixedPoint.Unsigned memory tokenRedemptionValue = liquidation
.tokensOutstanding
.mul(liquidation.settlementPrice);
FixedPoint.Unsigned
memory disputerDisputeReward = disputerDisputeRewardPercentage.mul (
tokenRedemptionValue
)i
FixedPoint.Unsigned
memory sponsorDisputeReward = sponsorDisputeRewardPercentage.mul(
tokenRedemptionValue
)5
FixedPoint.Unsigned memory disputeBondAmount = liquidation
.lockedCollateral

.mul (disputeBondPercentage) ;

// There are three main outcome states: either the dispute succeeded, failed or was not
updated.

// Based on the state, different parties of a liquidation receive different amounts.

// After assigning rewards based on the liquidation status, decrease the total collateral
held in this contract

// by the amount to pay each party. The actual amounts withdrawn might differ if
_removeCollateral causes

// precision loss.

RewardsData memory rewards;

if (liquidation.state == Status.DisputeSucceeded) {

// If the dispute is successful then all three users should receive rewards:

// Pay DISPUTER: disputer reward + dispute bond + returned ooReward
rewards.payToDisputer = disputerDisputeReward

.add (disputeBondAmount)

.add (ooReward) ;

// Pay SPONSOR: remaining collateral (collateral - TRV) + sponsor reward
rewards.payToSponsor = liquidation

.lockedCollateral

.sub(tokenRedemptionValue)

@V BlockSec

500
501
502
503
504
505

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

.add (sponsorDisputeReward) ;

// Pay LIQUIDATOR: TRV - dispute reward - sponsor reward
// If TRV > Collateral, then subtract rewards from collateral

// NOTE: ‘payToLiquidator‘ should never be below zero since we enforce that

// (sponsorDisputePct+disputerDisputePct) <= 1 in the constructor when these params are

set.
rewards.payToLiquidator = tokenRedemptionValue
.sub(sponsorDisputeReward)

.sub(disputerDisputeReward) ;

// Transfer rewards and debit collateral

liquidationCollateral = liquidationCollateral.sub(
rewards.payToLiquidator

)3

liquidationCollateral = liquidationCollateral.sub(
rewards.payToSponsor

)3

liquidationCollateral = liquidationCollateral.sub(
rewards.payToDisputer

)§

collateralCurrency.safeTransfer(
liquidation.disputer,
rewards.payToDisputer.rawValue
)3
collateralCurrency.safeTransfer(
liquidation.liquidator,
rewards.payToLiquidator.rawValue
)5
collateralCurrency.safeTransfer(
liquidation.sponsor,
rewards.payToSponsor.rawValue

DE;

} else if (liquidation.state == Status.DisputeFailed) {
// In the case of a failed dispute only the liquidator can withdraw.

// Pay LIQUIDATOR: collateral + dispute bond + returned ooReward
rewards.payToLiquidator = liquidation

.lockedCollateral

.add (disputeBondAmount)

.add (ooReward) ;

// Transfer rewards and debit collateral
liquidationCollateral = liquidationCollateral.sub(
rewards.payToLiquidator

)§

collateralCurrency.safeTransfer (
liquidation.liquidator,
rewards.payToLiquidator.rawValue

g

} else if (liquidation.state == Status.NotDisputed) {

10

@V BlockSec

5562 // If the state is pre-dispute but time has passed liveness then there was no dispute.
We represent this

553 // state as a dispute failed and the liquidator can withdraw.

554

555 // Pay LIQUIDATOR: collateral + returned ooReward

556 rewvards.payTolLiquidator = liquidation.lockedCollateral.add(

557 ooReward

558);

Listing 2.4: UMA/financial-templates/expiring-multiparty/Liquidatable.sol

Impact Other users’ collateral may be maliciously liquidated by the first user.

Suggestion Add an additional check to make sure the collateralization ratio is valid when creating a new
position.

Feedback from the Project sSumero would be deploying the EMP contract and then minting an initial
amount of synth (first position). Thus, always maintaining the correct global collateralization ratio (GCR).
So, we believe this is not a valid issue with regards to the way we are using EMP.

2.2 Additional Recommendation

2.2.1 Avoid Duplicated Assets in AssetManager

Status Confirmed
Introduced by Version 1

Description The owner of the AssetManager has the ability to add new assets (i.e., Emp, SwapPair, and
StakingReward) into the system. However, there is no check to ensure the newly added assets are not du-
plicated. Meanwhile, the global variables totalEmpAssets/totalSwapPairAssets/totalStakingRewardAssets
will always increase, which is incorrect.

34 function addEmp(address _asset) external onlyOwner {

35 require(_asset != address(0), "AssetManager: ZERO_ADDRESS");
36 totalEmpAssets = totalEmpAssets + 1;

37 idToVerifiedEmps [totalEmpAssets] = Asset(_asset, Status.Open);
38 emit Added(Type.Emp, _asset, totalEmpAssets);

39 }

Listing 2.5: AssetManager.sol

73 function addSwapPair(address _asset) external onlyOwner {

74 require(_asset != address(0), "AssetManager: ZERO_ADDRESS");

75 totalSwapPairAssets = totalSwapPairAssets + 1;

76 idToVerifiedSwapPairs[totalSwapPairAssets] = Asset(_asset, Status.Open);
77 emit Added(Type.SwapPair, _asset, totalSwapPairAssets);

78 }

Listing 2.6: AssetManager.sol

[
‘112 function addStakingReward(address _asset) external onlyOwner { ‘
‘113 require(_asset != address(0), "AssetManager: ZERO_ADDRESS");

11

’g\,\l BlockSec

114 totalStakingRewardAssets = totalStakingRewardAssets + 1;

115 idToVerifiedStakingRewards[totalStakingRewardAssets] = Asset(

116 _asset,

117 Status.Open

118);

119 emit Added(Type.StakingReward, _asset, totalStakingRewardAssets);
120 }

Listing 2.7: AssetManager.sol

Suggestion 1 Add the check to make sure there exists no duplicated assets.

Feedback from the Project Noted. This is a design choice by us. AssetManager will only be used by
Sumero team, to display assets on UI. We will make sure not to add duplicates. We will not have more than
10-15 assets in each of the global arrays, so length of the global arrays isn’t a concern for us.

2.2.2 Avoid Incomplete Check of Whitelist Status

Status Confirmed
Introduced by Version 1

Description The function removeFromihitelist() allows the owner to remove an address from the
whitelist. There is a check in the function to ensure the existence of elementToRemove in the whitelist
(line 59), but the Status None is also included, which is not reasonable.

53 function removeFromWhitelist(address elementToRemove)
54 external

55 override

56 nonReentrant

57 onlyOwner

58 {

59 if (whitelist[elementToRemove] != Status.Out) {
60 whitelist[elementToRemove] = Status.Out;

61 emit RemovedFromWhitelist(elementToRemove) ;

62 }

63 ¥

Listing 2.8: UMA/common/implementation/AddressWhitelist.sol

Suggestion | Make sure the Status of the elementToRemove is In.

Feedback from the Project Agreed. Valid point. We have forked UlMA contracts, so we would want to
avoid any changes unless absolutely necessary.

2.2.3 Code Optimization

Status Confirmed
Introduced by Version 1

Description In the contract PricelessPositionManager, the user can repay minted tokenCurrency back
to the contract to increase the collateralization ratio of the position. The contract will then burn the received
tokenCurrency. These two steps can be refactored to one step by invoking the function burnFrom() in the

12

@V BlockSec

tokenCurrency contract (i.e., ExpandedERC20.s01), which enables the Burner to burn tokens from the user
directly.
Similar problems also exist in function redeem(), settleExpired(), and createLiquidation().

542 function repay(FixedPoint.Unsigned memory numTokens)

543 public

544 onlyPreExpiration

545 noPendingWithdrawal (msg.sender)

546 nonReentrant

547 {

548 PositionData storage positionData = _getPositionData(msg.sender);
549 require (numTokens . isLessThanOrEqual (positionData. tokensOutstanding)) ;
550

551 // Decrease the sponsors position tokens size. Ensure it is above the min sponsor size.
552 FixedPoint.Unsigned memory newTokenCount = positionData

553 .tokensOutstanding

554 .sub(numTokens) ;

555 require (newTokenCount .isGreaterThanOrEqual (minSponsorTokens)) ;

556 positionData.tokensOutstanding = newTokenCount;

557

558 // Update the totalTokensOutstanding after redemption.

559 totalTokensOutstanding = totalTokensOutstanding.sub(numTokens) ;

560

561 emit Repay(msg.sender, numTokens.rawValue, newTokenCount.rawValue);
562

563 // Transfer the tokens back from the sponsor and burn them.

564 tokenCurrency.safeTransferFrom(

565 msg.sender,

566 address(this),

567 numTokens.rawValue

568)

569 tokenCurrency.burn(numTokens.rawValue) ;

570 }

Listing 2.9: UMA/financial-templates/expiring-multiparty/PricelessPositionManager.sol

581 function redeem(FixedPoint.Unsigned memory numTokens)

582 public

583 noPendingWithdrawal (msg.sender)

584 nonReentrant

585 returns (FixedPoint.Unsigned memory amountWithdrawn)

586 {

587 PositionData storage positionData = _getPositionData(msg.sender);

588 require (!numTokens.isGreaterThan(positionData.tokensOutstanding));
589

590 FixedPoint.Unsigned memory fractionRedeemed = numTokens.div(

591 positionData.tokensOutstanding

592)g

593 FixedPoint.Unsigned memory collateralRedeemed = fractionRedeemed.mul(
594 positionData.collateral

595);

596

597 // If redemption returns all tokens the sponsor has then we can delete their position. Else

13

@V BlockSec

, downsize.
598 if (positionData.tokensOutstanding.isEqual (numTokens)) {
599 amountWithdrawn = _deleteSponsorPosition(msg.sender);
600 } else {
601 // Decrement the sponsor’s collateral and global collateral amounts.
602 amountWithdrawn = _decrementCollateralBalances (
603 positionData,
604 collateralRedeemed
605);
606
607 // Decrease the sponsors position tokens size. Ensure it is above the min sponsor size.
608 FixedPoint.Unsigned memory newTokenCount = positionData
609 .tokensOutstanding
610 .sub (numTokens) ;
611 require (
612 newTokenCount . isGreaterThanOrEqual (minSponsorTokens) ,
613 "Below minimum sponsor position"
614)8
615 positionData.tokensOutstanding = newTokenCount;
616
617 // Update the totalTokensOutstanding after redemption.
618 totalTokensOutstanding = totalTokensOutstanding.sub(numTokens) ;
619 }
620
621 emit Redeem(msg.sender, amountWithdrawn.rawValue, numTokens.rawValue) ;
622
623 // Transfer collateral from contract to caller and burn callers synthetic tokens.
624 collateralCurrency.safeTransfer (msg.sender, amountWithdrawn.rawValue);
625 tokenCurrency.safeTransferFrom(
626 msg.sender,
627 address(this),
628 numTokens.rawValue
629)3
630 tokenCurrency.burn(numTokens.rawValue) ;
631 }

Listing 2.10: UMA/financial-templates/expiring-multiparty/PricelessPositionManager.sol

642 function settleExpired()

643 external

644 onlyPostExpiration

645 nonReentrant

646 returns (FixedPoint.Unsigned memory amountWithdrawn)

647 {

648 // If the contract state is open and onlyPostExpiration passed then ‘expire()‘ has not yet
been called.

649 require(contractState != ContractState.Open, "Unexpired position");

650

651 // Get the current settlement price and store it. If it is not resolved will revert.

652 if (contractState != ContractState.ExpiredPriceReceived) {

653 expiryPrice = _getOraclePrice(expirationTimestamp) ;

654 contractState = ContractState.ExpiredPriceReceived;

655 }

14

'Q‘,\l BlockSec

656
657
658
659
660
661
662
663
664
665

666
667
668

669
670
671
672
673
674
675
676
677
678
679
680
681
682

683
684
685
686
687
688
689
690
691
692

693
694
695
696
697
698
699
700
701
702
703
704

// Get caller’s tokens balance and calculate amount of underlying entitled to them.
FixedPoint.Unsigned memory tokensToRedeem = FixedPoint.Unsigned(
tokenCurrency.balanceOf (msg.sender)

Ok

FixedPoint.Unsigned memory totalRedeemableCollateral = tokensToRedeem

.mul (expiryPrice) ;

// If the caller is a sponsor with outstanding collateral they are also entitled to their
excess collateral after their debt.
PositionData storage positionData = positions[msg.sender];
if (positionData.collateral.isGreaterThan(0)) {
// Calculate the underlying entitled to a token sponsor. This is collateral - debt in
underlying.
FixedPoint.Unsigned memory tokenDebtValueInCollateral = positionData
.tokensOutstanding
.mul (expiryPrice);
FixedPoint.Unsigned memory positionCollateral = positionData

.collateral;

// If the debt is greater than the remaining collateral, they cannot redeem anything.
FixedPoint.Unsigned
memory positionRedeemableCollateral = tokenDebtValueInCollateral
.isLessThan(positionCollateral)
? positionCollateral.sub(tokenDebtValueInCollateral)
: FixedPoint.Unsigned(0);

// Add the number of redeemable tokens for the sponsor to their total redeemable
collateral.

totalRedeemableCollateral = totalRedeemableCollateral.add(
positionRedeemableCollateral

)§

// Reset the position state as all the value has been removed after settlement.
delete positions[msg.sender];

emit EndedSponsorPosition(msg.sender);

// Take the min of the remaining collateral and the collateral "owed". If the contract is
undercapitalized,
// the caller will get as much collateral as the contract can pay out.
FixedPoint.Unsigned memory payout = FixedPoint.min(
totalPositionCollateral,
totalRedeemableCollateral
)5
// Decrement total contract collateral and outstanding debt.
totalPositionCollateral = totalPositionCollateral.sub(payout);
amountWithdrawn = payout;

totalTokensOutstanding = totalTokensOutstanding.sub(tokensToRedeem) ;

emit SettleExpiredPosition(

15

@V BlockSec

705 msg.sender,

706 amountWithdrawn.rawValue,

707 tokensToRedeem.rawValue

708 D8

709

710 // Transfer tokens & collateral and burn the redeemed tokens.
711 collateralCurrency.safeTransfer (msg.sender, amountWithdrawn.rawValue) ;
712 tokenCurrency.safeTransferFrom(

713 msg.sender,

714 address(this),

715 tokensToRedeem.rawValue

716)3

717 tokenCurrency.burn(tokensToRedeem.rawValue) ;

718 ¥

Listing 2.11: UMA/financial-templates/expiring-multiparty/PricelessPositionManager.sol

226 function createLiquidation(

227 address sponsor,

228 FixedPoint.Unsigned calldata minCollateralPerToken,

229 FixedPoint.Unsigned calldata maxCollateralPerToken,

230 FixedPoint.Unsigned calldata maxTokensToLiquidate,

231 uint256 deadline

232)

233 external

234 onlyPreExpiration

235 nonReentrant

236 returns (

237 uint2566 liquidationId,

238 FixedPoint.Unsigned memory tokensLiquidated

239)

240 {

241 // Check that this transaction was mined pre-deadline.

242 require(block.timestamp <= deadline, "Mined after deadline");

243

244 // Retrieve Position data for sponsor

245 PositionData storage positionToLiquidate = _getPositionData(sponsor) ;

246

247 tokensLiquidated = FixedPoint.min(

248 maxTokensToLiquidate,

249 positionToLiquidate.tokensOutstanding

250);

251 require(tokensLiquidated.isGreaterThan(0));

252

253 // Starting values for the Position being liquidated. If withdrawal request amount is >
position’s collateral,

254 // then set this to 0, otherwise set it to (startCollateral - withdrawal request amount).

255 FixedPoint.Unsigned memory startCollateral = positionToLiquidate

256 .collateral;

257 FixedPoint.Unsigned memory startCollateralNetOfWithdrawal = FixedPoint

258 .fromUnscaledUint (0) ;

259 if (

260 positionToLiquidate.withdrawalRequestAmount.isLessThanOrEqual(

16

'Q‘,\l BlockSec

261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

305
306
307
308
309
310
311

startCollateral
)
) {
startCollateralNetOfWithdrawal = startCollateral.sub(
positionTolLiquidate.withdrawalRequestAmount
E
}

// Scoping to get rid of a stack too deep error.

{
FixedPoint.Unsigned memory startTokens = positionToLiquidate
.tokensOutstanding;
// The Position’s collateralization ratio must be between [minCollateralPerToken,
maxCollateralPerToken] .
// maxCollateralPerToken >= startCollateralNetOfWithdrawal / startTokens.
require(
maxCollateralPerToken.mul (startTokens) .isGreaterThanOrEqual (
startCollateralNetOfWithdrawal
),
"CR is more than max liq. price"
)3
// minCollateralPerToken <= startCollateralNetOfWithdrawal / startTokens.
require (
minCollateralPerToken.mul (startTokens) .isLessThanOrEqual (
startCollateralNetOfWithdrawal
Do
"CR is less than min liq. price"
)8
}

// These will be populated within the scope below.
FixedPoint.Unsigned memory lockedCollateral;

FixedPoint.Unsigned memory lockedCollateralAfterWithdrawals;

// Scoping to get rid of a stack too deep error.
{
FixedPoint.Unsigned memory ratio = tokensLiquidated.div(
positionTolLiquidate.tokensOutstanding

g

// The actual amount of collateral that gets moved to the liquidation.
lockedCollateral = startCollateral.mul(ratio);

// For purposes of disputes, it’s actually this lockedCollateralAfterWithdrawals value
that’s used.
lockedCollateralAfterWithdrawals = startCollateralNetOfWithdrawal

.mul (ratio);

// Part of the withdrawal request is also removed. Ideally:
// lockedCollateralAfterWithdrawals + withdrawalAmountToRemove = lockedCollateral.
FixedPoint.Unsigned

memory withdrawalAmountToRemove = positionToLiquidate

17

'Q‘,\l BlockSec

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

330

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

347

348

349

350
351

352
353
354
355

356

.withdrawalRequestAmount

.mul(ratio);

_reduceSponsorPosition(
sponsor,
tokensLiquidated,
lockedCollateral,

withdrawalAmountToRemove

// Add to the global liquidation collateral count.
liquidationCollateral = liquidationCollateral.add(lockedCollateral).add(
ooReward

g

// Construct liquidation object.
// Note: All dispute-related values are zeroed out until a dispute occurs. liquidationId is
the index of the new
// LiquidationData that is pushed into the array, which is equal to the current length of
the array pre-push.
liquidationId = liquidations[sponsor].length;
liquidations [sponsor] .push(
LiquidationData({
sponsor: sponsor,
liquidator: msg.sender,
state: Status.NotDisputed,
liquidationTime: block.timestamp,
tokensOutstanding: tokensLiquidated,
lockedCollateral: lockedCollateral,
lockedCollateralAfterWithdrawals: lockedCollateralAfterWithdrawals,
disputer: address(0),
settlementPrice: FixedPoint.fromUnscaledUint (0)

B

// If this liquidation is a subsequent liquidation on the position, and the liquidation
size is larger than

// some "griefing threshold", then re-set the liveness. This enables a liquidation against
a withdraw request to be

// "dragged out" if the position is very large and liquidators need time to gather funds.
The griefing threshold

// is enforced so that liquidations for trivially small # of tokens cannot drag out an

honest sponsor’s slow withdrawal.

// We arbitrarily set the "griefing threshold" to ‘minSponsorTokens because it is the only
parameter
// denominated in token currency units and we can avoid adding another parameter.
FixedPoint.Unsigned memory griefingThreshold = minSponsorTokens;
if (
positionToLiquidate.withdrawalRequestPassTimestamp > O && // The position is undergoing
a slow withdrawal.

positionToLiquidate.withdrawalRequestPassTimestamp >

18

@V BlockSec

357 block.timestamp &% // The slow withdrawal has not yet expired.
358 tokensLiquidated.isGreaterThanOrEqual (griefingThreshold) // The liquidated token count
is above a "griefing threshold".
359) {
360 positionToLiquidate.withdrawalRequestPassTimestamp = (
361 block.timestamp
362) .add(withdrawallLiveness) ;
363 }
364
365 emit LiquidationCreated(
366 sponsor,
367 msg.sender,
368 liquidationId,
369 tokensLiquidated.rawValue,
370 lockedCollateral.rawValue,
371 lockedCollateralAfterWithdrawals.rawValue,
372 block.timestamp
373);
374
375 // Destroy tokens
376 tokenCurrency.safeTransferFrom(
377 msg.sender,
378 address(this),
379 tokensLiquidated.rawValue
380);
381 tokenCurrency.burn(tokensLiquidated.rawValue) ;
382
383 // Pull ooReward from liquidator.
384 collateralCurrency.safeTransferFrom(
385 msg.sender,
386 address(this),
387 ooReward.rawValue
388);
389
Listing 2.12: UMA/financial-templates/expiring-multiparty/Liquidatable.sol
91 function burnFrom(address recipient, uint256 value)
92 external
93 override
94 onlyRoleHolder (uint256 (Roles.Burner))
95 returns (bool)
96
97 _burn(recipient, value);
98 return true;
99

Suggestion |

Listing 2.13: UMA/common/implementation/ExpandedERC20.sol

19

Implement the function burnFrom() instead of safetransferFrom() and burn().

@V BlockSec

2.2.4 Add Sanity Address Checks in Constructor

Status Fixed in Version 2
Introduced by Version 1

Description Inthe constructor of the contract ClayStakingRewards, there is no check to ensure that the
addresses of stakingToken and clayToken are not zero.
Similar problems also exist in the contract ClayDistributor.

53 constructor(

54 address _stakedToken,

55 address _clayToken,

56 uint256 _periodFinish,

57 uint256 _maxReward

58) {

59 stakingToken = IERC20(_stakedToken) ;
60 clayToken = IClayToken(_clayToken) ;
61 periodFinish = _periodFinish;

62 maxReward = _maxReward;

63 rewardRate = _maxReward / (_periodFinish - block.timestamp);
64 }

Listing 2.14: ClayStakingRewards.sol

16 constructor(address token_, bytes32 merkleRoot_, uint256 dropAmount_) {
17 token = token_;

18 merkleRoot = merkleRoot_;
19 dropAmount = dropAmount_;
20 }

Listing 2.15: ClayDistributor.sol

Suggestion | Add the check to ensure the addresses added in the constructor are not zero.

2.2.5 Redundant Check in withdrawPassedRequest()

Status Confirmed
Introduced by Version 1

Description The function requestWithdrawal() allows the user to request for a withdrawal to with-
draw a certain amount of collateral from the position. The request has to be pending for a period of
withdrawlLiveness, after which the user can invoke the function withdrawPassedRequest () to withdraw
the requested collateral.

In the function requestWithdrawal (), there is a check to ensure that the requested withdrawal amount
will always be less or equal than the total collateral in the position (lines 397 - 398). However, this same
check also exists in the function withdrawPassedRequest () (lines 434 - 435). Since the collateral will never
decrease during the pending period, the check in the function withdrawPassedRequest () is redundant.

[
‘389 function requestWithdrawal (FixedPoint.Unsigned memory collateralAmount)

|
‘390 public
‘391 onlyPreExpiration
‘392 noPendingWithdrawal (msg.sender) ‘

20

@V BlockSec

393 nonReentrant

394 {

395 PositionData storage positionData = _getPositionData(msg.sender);

396 require (

397 collateralAmount.isGreaterThan(0) &&

398 collateralAmount.isLessThanOrEqual (positionData.collateral)

399);

400

401 // Make sure the proposed expiration of this request is not post-expiry.

402 uint256 requestPassTime = (block.timestamp).add(withdrawalLiveness);

403 require(requestPassTime < expirationTimestamp) ;

404

405 // Update the position object for the user.

406 positionData.withdrawalRequestPassTimestamp = requestPassTime;

407 positionData.withdrawalRequestAmount = collateralAmount;

408

409 emit RequestWithdrawal (msg.sender, collateralAmount.rawValue);

410 }

Listing 2.16: UMA/financial-templates/expiring-multiparty/PricelessPositionManager.sol

419 function withdrawPassedRequest ()

420 external

421 onlyPreExpiration

422 nonReentrant

423 returns (FixedPoint.Unsigned memory amountWithdrawn)

424 {

425 PositionData storage positionData = _getPositionData(msg.sender);

426 require (

427 positionData.withdrawalRequestPassTimestamp != 0 &&

428 positionData.withdrawalRequestPassTimestamp <= block.timestamp

429);

430

431 // If withdrawal request amount is > position collateral, then withdraw the full collateral
amount .

432 FixedPoint.Unsigned memory amountToWithdraw;

433 if (

434 positionData.withdrawalRequestAmount.isGreaterThan(

435 positionData.collateral

436)

437) {

438 amountToWithdraw = positionData.collateral;

439 } else {

440 amountToWithdraw = positionData.withdrawalRequestAmount;

441 }

442

443 // Decrement the sponsor’s collateral and global collateral amounts.

444 amountWithdrawn = _decrementCollateralBalances (

445 positionData,

446 amountToWithdraw

447);

448

449 // Reset withdrawal request by setting withdrawal amount and withdrawal timestamp to O.

21

’g\,\l BlockSec

450 _resetWithdrawalRequest (positionData) ;

451

452 // Transfer approved withdrawal amount from the contract to the caller.
453 collateralCurrency.safeTransfer (msg.sender, amountWithdrawn.rawValue) ;
454

455 emit RequestWithdrawalExecuted(msg.sender, amountWithdrawn.rawValue);
456 }

Listing 2.17: UMA/financial-templates/expiring-multiparty/PricelessPositionManager.sol

Suggestionl Remove the redundant check in the function withdrawPassedRequest ().

2.2.6 Add Sanity Checks for WithdrawLiveness

Status Confirmed
Introduced by Version 1

Description In the contract PricelessPostionManager, there is a global parameter named withdrawallLiveness
which is assigned in the constructor by the creator. This parameter specifies the time period for a sponsor
to transfer position or withdraw all collateral. Specifically, the contract design requires the sponsor to first
request for a withdrawal or transfer, and then wait for a certain period of time (i.e., withdrawlLiveness)
before being able to transfer or withdraw.

Note that the contract requires the withdrawal or transfer time to be less than the expiration time of the
contract (i.e., expirationTimestamp), SO in the constructor, a check should be added to ensure that from the
timestamp when the contract is deployed, the contract will not expire after a period of withdrawalLiveness.

209 constructor (

210 uint256 _expirationTimestamp,

211 uint256 _withdrawallLiveness,

212 address _collateralAddress,

213 address _tokenAddress,

214 address _finderAddress,

215 bytes32 _priceldentifier,

216 FixedPoint.Unsigned memory _minSponsorTokens,
217 FixedPoint.Unsigned memory _ooReward,

218 address _financialProductLibraryAddress,

219 bytes memory _ancillaryData,

220 address _owner

221) nonReentrant() {

222 finder = FinderInterface(_finderAddress);

223

224 require(_expirationTimestamp > block.timestamp) ;
225 require(

226 _getIdentifierWhitelist() .isIdentifierSupported(_priceldentifier)
227)3

228

229 expirationTimestamp = _expirationTimestamp;

230 withdrawallLiveness = _withdrawalLiveness;

231 tokenCurrency = ExpandedIERC20(_tokenAddress) ;
232 collateralCurrency = IERC20(_collateralAddress);
233 minSponsorTokens = _minSponsorTokens;

234 ooReward = _ooReward;

22

@V BlockSec

235 priceldentifier = _priceldentifier;

236 ancillaryData = _ancillaryData;

237 owner = _owner;

238

239 // Initialize the financialProductLibrary at the provided address.
240 financialProductLibrary = FinancialProductLibrary(

241 _financialProductLibraryAddress

242)3

243 }

Listing 2.18: UMA/financial-templates/expiring-multiparty/PricelessPositionManager.sol

Suggestion | Add a check in the constructor to ensure “(block.timestamp).add(withdrawallLiveness) <

expirationTimestamp”

2.2.7 Add Sanity Checks for Transformed settlementPrice

Status Confirmed
Introduced by Version 1

Description The internal function _settle() will settle a liquidation that is in the Disputed state. The
required collateral is calculated as the value of the underlying collateral multiplied by the required collateral
ratio. If the position has more collateral than the contract requires, then the liquidation is invalid.

In the current implementation, the required collateral ratio is the same as collateralRequirement.
However, if the financialProductLibrary is deployed customly by the creator, the returned required col-
lateral ratio may be different. In this case, there should be a check to make sure the ratio is always larger

than one.

622 function _settle(uint256 liquidationId, address sponsor) internal {

623 LiquidationData storage liquidation = _getLiquidationData(

624 sponsor,

625 liquidationId

626)s

627

628 // Settlement only happens when state == Disputed and will only happen once per liquidation
629 // If this liquidation is not ready to be settled, this method should return immediately.
630 if (liquidation.state != Status.Disputed) {

631 return;

632 }

633

634 // Get the returned price from the oracle. If this has not yet resolved will revert.
635 liquidation.settlementPrice = _getOraclePrice(

636 liquidation.liquidationTime

637);

638

639 // Find the value of the tokens in the underlying collateral.

640 FixedPoint.Unsigned memory tokenRedemptionValue = liquidation

641 .tokensOutstanding

642 .mul(liquidation.settlementPrice);

643

23

'Q‘,\l BlockSec

644 // The required collateral is the value of the tokens in underlying * required collateral
ratio. The Transform

645 // Collateral requirement method applies a from the financial Product library to change the

scaled the collateral

646 // requirement based on the settlement price. If no library was specified when deploying
the emp then this makes no change.

647 FixedPoint.Unsigned memory requiredCollateral = tokenRedemptionValue

648 .mul (_transformCollateralRequirement (liquidation.settlementPrice));

649

650 // If the position has more than the required collateral it is solvent and the dispute is
valid(liquidation is invalid)

651 // Note that this check uses the lockedCollateralAfterWithdrawals not the lockedCollateral
as this considers withdrawals.

652 bool disputeSucceeded = liquidation

653 .lockedCollateralAfterWithdrawals

654 .isGreaterThanOrEqual (requiredCollateral) ;

655

656 liquidation.state = disputeSucceeded

657 ? Status.DisputeSucceeded

658 : Status.DisputeFailed;

659

660 emit DisputeSettled(

661 msg.sender,

662 sponsor,

663 liquidation.liquidator,

664 liquidation.disputer,

665 liquidationId,

666 disputeSucceeded

667);

668 }
Listing 2.19: UMA/financial-templates/expiring-multiparty/Liquidatable.sol

729 function _transformCollateralRequirement (FixedPoint.Unsigned memory price)

730 internal

731 view

732 returns (FixedPoint.Unsigned memory)

733 {

734 if (!address(financialProductLibrary) .isContract())

735 return collateralRequirement;

736 try

737 financialProductLibrary.transformCollateralRequirement (

738 price,

739 collateralRequirement

740)

741 returns (FixedPoint.Unsigned memory transformedCollateralRequirement) {

742 return transformedCollateralRequirement;

743 } catch {

744 return collateralRequirement;

745 }

746 }

Listing 2.20: UMA/financial-templates/expiring-multiparty/Liquidatable.sol

24

@V BlockSec

Suggestionl Add acheckinthe function _transformCollateralRequirement () to make sure transformedCollateral
is larger than one.

2.2.8 Redundant Check in createLiquidation()

Status Confirmed
Introduced by Version 1

Description In function createlLiquidation(), there is a check on whether the position has a pending
withdrawal request. However, when the withdrawalRequestPassTimestamp is larger than the current times-
tamp, it must be larger than 0. Thus, the check that withdrawalRequestPassTimestamp should be larger
than zero is redundant.

226 function createLiquidation(

227 address sponsor,

228 FixedPoint.Unsigned calldata minCollateralPerToken,

229 FixedPoint.Unsigned calldata maxCollateralPerToken,

230 FixedPoint.Unsigned calldata maxTokensToLiquidate,

231 uint256 deadline

232)

233 external

234 onlyPreExpiration

235 nonReentrant

236 returns (

237 uint256 liquidationId,

238 FixedPoint.Unsigned memory tokensLiquidated

239)

240 {

241 // Check that this transaction was mined pre-deadline.

242 require(block.timestamp <= deadline, "Mined after deadline");

243

244 // Retrieve Position data for sponsor

245 PositionData storage positionToLiquidate = _getPositionData(sponsor) ;

246

247 tokensLiquidated = FixedPoint.min(

248 maxTokensToLiquidate,

249 positionToLiquidate.tokensOutstanding

250);

251 require(tokensLiquidated.isGreaterThan(0));

252

253 // Starting values for the Position being liquidated. If withdrawal request amount is >
position’s collateral,

254 // then set this to 0, otherwise set it to (startCollateral - withdrawal request amount).

255 FixedPoint.Unsigned memory startCollateral = positionToLiquidate

256 .collateral;

257 FixedPoint.Unsigned memory startCollateralNetOfWithdrawal = FixedPoint

258 .fromUnscaledUint (0) ;

259 if (

260 positionToLiquidate.withdrawalRequestAmount.isLessThanOrEqual(

261 startCollateral

262)

263) {

25

'Q‘,\l BlockSec

264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

305
306
307
308
309
310
311
312
313
314

startCollateralNetOfWithdrawal = startCollateral.sub(

positionTolLiquidate.withdrawalRequestAmount

)g

// Scoping to get rid of a stack too deep error.

{
FixedPoint.Unsigned memory startTokens = positionToLiquidate
.tokensOutstanding;
// The Position’s collateralization ratio must be between [minCollateralPerToken,
maxCollateralPerToken] .
// maxCollateralPerToken >= startCollateralNetOfWithdrawal / startTokens.
require (
maxCollateralPerToken.mul (startTokens) .isGreaterThanOrEqual(
startCollateralNetOfWithdrawal
)g
"CR is more than max liq. price"
)8
// minCollateralPerToken <= startCollateralNetOfWithdrawal / startTokens.
require(
minCollateralPerToken.mul (startTokens) . isLessThanOrEqual(
startCollateralNetOfWithdrawal
Do
"CR is less than min liq. price"
)
}

// These will be populated within the scope below.
FixedPoint.Unsigned memory lockedCollateral;

FixedPoint.Unsigned memory lockedCollateralAfterWithdrawals;

// Scoping to get rid of a stack too deep error.
{
FixedPoint.Unsigned memory ratio = tokensLiquidated.div(
positionTolLiquidate.tokensOutstanding

)§

// The actual amount of collateral that gets moved to the liquidation.
lockedCollateral = startCollateral.mul(ratio);

// For purposes of disputes, it’s actually this lockedCollateralAfterWithdrawals value
that’s used.
lockedCollateralAfterWithdrawals = startCollateralNetOfWithdrawal

.mul (ratio);

// Part of the withdrawal request is also removed. Ideally:
// lockedCollateralAfterWithdrawals + withdrawalAmountToRemove = lockedCollateral.
FixedPoint.Unsigned
memory withdrawalAmountToRemove = positionToLiquidate
.withdrawalRequestAmount

.mul (ratio);

26

'Q‘,\l BlockSec

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

330

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

347

348

349

350
351

352
353
354
355

356
357
358

_reduceSponsorPosition(
sponsor,
tokensLiquidated,
lockedCollateral,

withdrawalAmountToRemove

// Add to the global liquidation collateral count.
liquidationCollateral = liquidationCollateral.add(lockedCollateral).add(
ooReward

Mk

// Construct liquidation object.
// Note: All dispute-related values are zeroed out until a dispute occurs. liquidationId is
the index of the new
// LiquidationData that is pushed into the array, which is equal to the current length of
the array pre-push.
liquidationId = liquidations[sponsor].length;
liquidations [sponsor] .push(
LiquidationData({
Sponsor: sSponsor,
liquidator: msg.sender,
state: Status.NotDisputed,
liquidationTime: block.timestamp,
tokensOutstanding: tokensLiquidated,
lockedCollateral: lockedCollateral,
lockedCollateralAfterWithdrawals: lockedCollateralAfterWithdrawals,
disputer: address(0),
settlementPrice: FixedPoint.fromUnscaledUint (0)

b

// If this liquidation is a subsequent liquidation on the position, and the liquidation
size is larger than

// some "griefing threshold", then re-set the liveness. This enables a liquidation against
a withdraw request to be

// "dragged out" if the position is very large and liquidators need time to gather funds.
The griefing threshold

// is enforced so that liquidations for trivially small # of tokens cannot drag out an

honest sponsor’s slow withdrawal.

// We arbitrarily set the "griefing threshold" to ‘minSponsorTokens‘ because it is the only
parameter
// denominated in token currency units and we can avoid adding another parameter.
FixedPoint.Unsigned memory griefingThreshold = minSponsorTokens;
if (
positionTolLiquidate.withdrawalRequestPassTimestamp > O && // The position is undergoing
a slow withdrawal.
positionToLiquidate.withdrawalRequestPassTimestamp >
block.timestamp && // The slow withdrawal has not yet expired.
tokensLiquidated.isGreaterThanOrEqual (griefingThreshold) // The liquidated token count

is above a "griefing threshold".

27

@V BlockSec

359) {

360 positionToLiquidate.withdrawalRequestPassTimestamp = (
361 block.timestamp

362) .add(withdrawalLiveness) ;

363 }

364

365 emit LiquidationCreated(

366 sponsor,

367 msg.sender,

368 liquidationId,

369 tokensLiquidated.rawValue,

370 lockedCollateral.rawValue,

371 lockedCollateralAfterWithdrawals.rawValue,
372 block.timestamp

373)3

374

375 // Destroy tokens

376 tokenCurrency.safeTransferFrom(

377 msg.sender,

378 address(this),

379 tokensLiquidated.rawValue

380);

381 tokenCurrency.burn(tokensLiquidated.rawValue) ;
382

383 // Pull ooReward from liquidator.
384 collateralCurrency.safeTransferFrom(
385 msg.sender,

386 address(this),

387 ooReward.rawValue

388);

389 }

Listing 2.21: UMA/financial-templates/expiring-multiparty/Liquidatable.sol

Suggestionl Remove the redundant check in the function createLiquidation().

2.3 Notes

2.3.1 Temporary System Parameters for Testing

Status Fixed in Version 2
Introduced by version 1

Description Inthe contract ClayBonds, the parameters APY_PERCENT, BONDS_ISSUANCE_PERIOD, and MATURATION_PERIO
are set to a temporary value for testing convenience. All of them should be updated before the deploy-
ment.

2.3.2 Customized FinancialProductLibrary

Status Confirmed
Introduced by version 1

28

@V BlockSec

Description In the current implementation, the final settled price from the oracle will be applied by the
method _transformCollateralRequirement () from the FinancialProductLibrary to get the required col-
lateralization ratio of the contract. The method in the FinancialProductLibrary will currently return the
[collateralRequirement which is set in the constructor. However, the creator has the ability to deploy a
customized FinancialProductLibrary, which is beyond our audit scope.

2.3.3 Potential Centralized Problem

Status Confirmed
Introduced by version 1

Description The owner of the contract PricelessPositionManager has the privilege to bring forward the
settlement of the contract by updating the expirationTimestamp of the contract via the function emergencyShutdown ().

29

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 DeFi Security
	2.1.1 Incorrect Calculation when Updating rewardRate
	2.1.2 Improper Check of maximumBondRewards
	2.1.3 Lack of Check for Collateralization Rate of the first user in create()

	2.2 Additional Recommendation
	2.2.1 Avoid Duplicated Assets in AssetManager
	2.2.2 Avoid Incomplete Check of Whitelist Status
	2.2.3 Code Optimization
	2.2.4 Add Sanity Address Checks in Constructor
	2.2.5 Redundant Check in withdrawPassedRequest()
	2.2.6 Add Sanity Checks for WithdrawLiveness
	2.2.7 Add Sanity Checks for Transformed settlementPrice
	2.2.8 Redundant Check in createLiquidation()

	2.3 Notes
	2.3.1 Temporary System Parameters for Testing
	2.3.2 Customized FinancialProductLibrary
	2.3.3 Potential Centralized Problem

		2023-05-24T15:59:54+0800
	BlockSec Audit Team

